MEMBRANE TECHNOLOGY AND APPLICATIONS

Second edition

Richard W. Baker

Membrane Technology and Research, Inc.
Menlo Park, California
CONTENTS

Preface
Acknowledgments for the first edition
Acknowledgments for the second edition

CHAPTER 1 OVERVIEW OF MEMBRANE SCIENCE AND TECHNOLOGY
Introduction
Historical Development of Membranes
Types of Membranes
 Isotropic Membranes
 Anisotropic Membranes
 Ceramic, Metal and Liquid Membranes
Membrane Processes
References

CHAPTER 2 MEMBRANE TRANSPORT THEORY
Introduction
The Solution-Diffusion Model
 Molecular Dynamics Simulations
 Concentration and Pressure Gradients in Membranes
 Application of the Solution-Diffusion Model to Specific Processes
 Evidence for the Solution-Diffusion Model
Structure-permeability Relationships in Solution-Diffusion Membranes
 Diffusion Coefficients
 Sorption Coefficients in Polymers
Pore-Flow Membranes
 Permeation in Ultrafiltration and Microfiltration Membranes
 Knudsen Diffusion and Surface Diffusion in Microporous Membranes
 Transition Region
CHAPTER 3 MEMBRANES AND MODULES

Introduction

Isotropic Membranes
 Isotropic Nonporous Membranes
 Isotropic Microporous Membranes

Anisotropic Membranes
 Phase Separation Membranes
 Interfacial Polymerization Membranes
 Solution-Coated Composite Membranes
 Other Anisotropic Membranes
 Repairing Membrane Defects

Metal Membranes and Ceramic Membranes
 Metal Membranes
 Ceramic Membranes

Liquid Membranes

Hollow-Fiber Membranes

Membrane Modules
 Plate-and-Frame Modules
 Tubular Modules
 Spiral-Wound Modules
 Hollow-Fiber Modules
 Vibrating and Rotating Modules

Module Selection

Conclusions and Future Directions

References
Introduction
Boundary Layer Film Model
Determination of The Peclet Number
Concentration Polarization in Liquid Separation Processes
Concentration Polarization in Gas Separation Processes
Cross-flow, Co-flow and Counter-flow
Conclusions and Future Directions
References

CHAPTER 5 REVERSE OSMOSIS
Introduction And History
Theoretical Background
Membranes and Materials
 Cellulosic Membranes
 Noncellulosic Membranes
 Composite Membranes
 Other Membrane Materials
Reverse Osmosis Membrane Categories
 Seawater and Brackish Water Membranes
 Nanofiltration Membranes
 Hyperfiltration Organic Solvent Separating Membranes
Membrane Selectivity
Membrane Modules
Membrane Fouling Control
Membrane Cleaning
Applications
 Brackish Water Desalination
 Seawater Desalination
 Ultrapure Water
 Wastewater Treatment
CHAPTER 6 ULTRAFILTRATION
Introduction and History
Characterization of Ultrafiltration Membranes
Concentration Polarization and Membrane Fouling
Membrane Cleaning
Membranes and Modules
 Membrane Materials
 Ultrafiltration Modules
System Design
 Batch Systems
 Continuous Systems
Applications
 Electrocoat Paint
 Food Industry
 Oil-water Emulsions
 Process Water and Product Recycling
 Biotechnology
Conclusions and Future Directions
References
CHAPTER 7 MICROFILTRATION
Introduction and History
Background
Types of Membrane
Membrane Characterization
Microfiltration Membranes and Modules
Process Design
Applications
Sterile Filtration of Pharmaceuticals
Sterilization of Wine and Beer
Microfiltration in the Electronics Industry
Microfiltration for Drinking Water Treatment
Conclusions and Future Directions
References

CHAPTER 8 GAS SEPARATION
Introduction And History
Theoretical Background
Membrane Materials and Structure
Metal Membranes
Polymeric Membranes
Ceramic and Zeolite Membranes
Membrane Modules
Process Design
Multistep and Multistage System Designs
Recycle Designs
Applications
Hydrogen Separations
Oxygen/nitrogen Separation
Natural Gas Separations
CHAPTER 9 PERVERAPORATION
Introduction and History
Theoretical Background
Membrane Materials and Modules
 Membrane Materials
 Membrane Modules
Process Design
Applications
 Solvent Dehydration
 Separation of Dissolved Organics from Water
 Separation of Organic Mixtures
Conclusions and Future Directions
References

CHAPTER 10 ION EXCHANGE MEMBRANE PROCESSES—ELECTRODIALYSIS
Introduction And History
Theoretical Background
 Transport Through Ion Exchange Membranes
Chemistry of Ion Exchange Membranes
 Homogeneous Membranes
 Heterogeneous Membranes
Transport in Electrodialysis Membranes
 Concentration Polarization and Limiting Current Density
 Current Efficiency and Power Consumption
CHAPTER 11 CARRIER FACILITATED TRANSPORT

Introduction And History
Coupled Transport
 Background
 Characteristics of Coupled Transport Membranes
 Coupled Transport Membranes
 Applications
Facilitated Transport
 Background
 Process Designs
 Applications
Conclusions and Future Directions
References
CHAPTER 12 MEDICAL APPLICATIONS OF MEMBRANES
Introduction
Hemodialysis
Blood Oxygenators
Controlled Drug Delivery
 Membrane Diffusion-controlled Systems
 Biodegradable Systems
 Osmotic Systems
References

CHAPTER 13 OTHER MEMBRANE PROCESSES
Introduction
Dialysis
Donnan Dialysis
Charge Mosaic Membranes and Piezodialysis
Membrane Contactors and Membrane Distillation
 Applications of Membrane Contactors
 Liquid/liquid Membrane Contactors (Membrane Distillation)
Membrane Reactors
 Applications of Membrane Reactors
Conclusions and Future Directions
References

Appendix
Index
PREFACE

My introduction to membranes was as a graduate student in 1963. At that time membrane permeation was a sub-study of materials science. What is now called membrane technology did not exist, nor did any large industrial applications of membranes. Since then, sales of membranes and membrane equipment have increased more than 100-fold and several tens of millions of square meters of membrane are produced each year—a membrane industry has been created.

This membrane industry is very fragmented. Industrial applications are divided into six main sub-groups: reverse osmosis, ultrafiltration, microfiltration, gas separation, pervaporation, and electrodialysis. Medical applications are divided into three more: artificial kidneys, blood oxygenators, and controlled release pharmaceuticals. Few companies are involved in more than one sub-group of the industry. Because of these divisions it is difficult to obtain an overview of membrane science and technology; this book is an attempt to give such an overview.

The book starts with a series of general chapters on membrane preparation, transport theory, and concentration polarization. Thereafter, each major membrane application is treated in a single 20-to 40-page chapter. In a book of this size it is impossible to describe every membrane process in detail, but the major processes are covered. However, medical applications were short-changed somewhat and some applications—fuel cell and battery separators and membrane sensors, for example—are not covered at all.

Each application chapter starts with a short historical background to acknowledge the developers of the technology. I am conscious that my views of what was important in the past differ from those of many of my academic colleagues. In this book I have given more credit than is usual to the engineers who actually made the processes work.
Readers of the Theory section (Chapter 3) and elsewhere in the book will see that membrane permeation is described using simple phenomenological equations, most commonly, Fick’s law. There is no mention of irreversible thermodynamics. The irreversible thermodynamic approach to permeation was very fashionable when I began to work with membranes in the 1960s. This approach has the appearance of rigor but hides the physical reality of even simple processes behind a fog of tough equations. As a student and young researcher, I struggled with irreversible thermodynamics for more than 15 years before finally giving up in the 1970s. I have lived happily ever after.

Finally, a few words on units. Because a great deal of modern membrane technology originated in the United States, the U.S. engineering units—gallons, cubic feet, and pounds per square inch—are widely used in the membrane industry. Unlike the creators of the Pascal, I am not a worshipper of mindless uniformity. Metric units are used when appropriate, but U.S. engineering units are used when they are the industry standard.

ACKNOWLEDGMENTS FOR THE FIRST EDITION

As a school boy I once received a mark of ½ out of a possible 20 in an end-of-term spelling test. My spelling is still weak, and the only punctuation I every really mastered was the period. This made the preparation of a polished final book draft from my yellow notepads a major undertaking. This effort was headed by Tessa Ennals and Cindi Wieselman. Cindi typed and retyped the manuscript with amazing speed, through its numerous revisions, without complaint. Tessa corrected my English, clarified my language, unsplit my infinitives and added every semicolon found in this book. She also chased down a source for all of the illustrations used and worked with David Lehmann, our graphics artist, to prepare the figures. It is a pleasure to acknowledge my debt to these
people. This book would have been far weaker without the many hours they spent working on it. I also received help from other friends and colleagues at MTR. Hans Wijmans read, corrected and made numerous suggestions on the theoretical section of the book (Chapter 3). Ingo Pinnau also provided data, references and many valuable suggestions in the area of membrane preparation and membrane material sciences. I am also grateful to Kenji Matsumoto, who read the section on Reverse Osmosis and made corrections, and to Heiner Strathmann, who did the same for Electrodialysis. The assistance of Marcia Patten, who proofed the manuscript, and Vivian Tran, who checked many of the references, is also appreciated.
ACKNOWLEDGMENTS FOR THE SECOND EDITION

Eighteen months after the first edition of this book appeared, it was out of print. Fortunately, John Wiley and Sons agreed to publish a second edition, and I have taken the opportunity to update and revise a number of sections. Tessa Ennals, long-time editor at Membrane Technology and Research, postponed her retirement to help me finish the new edition. Tessa has the standards of an earlier time, and here, as in the past, she gave the task nothing but her best effort. I am indebted to her, and wish her a long and happy retirement. Marcia Patten, Eric Peterson, David Lehmann, Cindy Dunnegan and Janet Farrant assisted Tessa by typing new sections, revising and adding figures, and checking references, as well as helping with proofing the manuscript. I am grateful to all of these colleagues for their help.