New Membrane Applications in Gas Processing

By

Kaaeid A. Lokhandwala and Marc Jacobs Membrane Technology and Research, Inc.

1360 Willow Road, Menlo Park, CA 94025

Membrane Separation Mechanism

Permeability = Diffusivity * Solubility (P) (D) (S) Membrane Selectivity $\frac{P_1}{P_2} = \frac{D_1}{D_2} \cdot \frac{S_1}{S_2}$

MTR's Rubbery Membranes Reject Methane and preferentially permeate the heavy hydrocarbons

Glassy v/s Rubbery Membranes

Glassy Membranes

Fast Gas					S	low Gas
Hydr	ogen	Nitrogen		Ethane		Hexane
H ₂ O	CO ₂		Methane		Propane	
<u>Rubbery</u>	Membra	ines				
Fast Gas					S	low Gas
Неха	ane	Ethane		Methan	е	<u>Nitrog</u> en
H ₂ O	Propa	ne	CO ₂		Hydroge	en

Membrane System Installations

Gas/Gas Separation Systems

H_2/N_2 , CH_4	~ 200 Units	Glassy	
O_2/N_2	~ 5,000 Units	Membranes	
CO ₂ /CH ₄	~ 200 Units		

Vapor/Gas Separation Systems

VOC/Air Hydrocarbon/N₂. $CH_4 \sim 100$ Units Rubbery Membranes

MTR's Composite Membrane

MTR Spiral Wound Cartridge

NGL Separation Skid

Flow Capacity Max: 8 MMSCFD Operated: 2.5-3.0 MMSCFD

Pressure rating

Max: 1250 psig Operated: 475 psig

Temperature

Max: 135°F Operated: 100-125°F

Field Data - Feed/Permeate Flow rates

Field data - Percent Removal Rates

Field Data - Hydrocarbon Dewpoints

NGL Separation and Recovery Applications

- Well-head Gas Dewpoint Control
- Associated Gas Liquids Recovery
- Engine and Turbine Fuel Gas Conditioning
- Propane Refrigeration Plant Debottleneck
- Re-injection Gas Liquids Recovery
- Flare Gas Liquids Recovery/Conditioning
- Vapor Recovery from Storage Tank Losses

Wellhead Dewpoint Control

Value of NGL (@ \$ 14/bbl): \$ 1.2 Million/yr

Both Hydrocarbon and Water Dewpoint Reduced in one process

Price of VaporSep System: \$750,000-850,000

Economic Comparison – Dewpoint Control

Process	Installed Cost (MM\$)	Processing Cost (\$/inlet Mscf)
Propane Refrigeration	1.6	0.165
Membrane	1.1	0.098

Basis: 10 MMSCFD Plant/Lean Gas (3.9 GPM, 1185 Btu/SCF)

Propane Refrigeration Cost: Purvin and Gertz, June 1999, Private Study

Platform Associated Gas Treatment

Increased Oil Production:870 Barrels/dayValue of Additional Oil Recovered (@ \$ 10/bbl):\$ 3.0 Million/yrAdditional Power required:470 hp

Price of VaporSep System: \$1 - 1.25 Million

Fuel Gas Conditioning - Gas Engine Example

Fuel Gas Conditioning - Gas Turbine Case

Fuel Gas Flow Rate (MMSCFD):6.1Feed Temperature (°F):120Conditioned Fuel Dewpoint(°F):76NGL Recovered (gpd):15,000Value of Recovered NGL (US \$):500,000Membrane System Price (US \$):400,000 - 600,000

Typical Fuel Conditioning Skid-mounted Unit

Designed for Offshore Installation

Main System Components

Membrane Modules/Housings Filter Separator/Coalescer Inlet and Discharge Valves

System Dimensions: 6 ft (W) x 8 ft (L) x 8 ft (H)

Location: Nigeria

Flow Capacity: 2.5 MMSCFD Pressure rating 550 psig Operating pressure: 220 psig

Feed hydrocarbon dewpoint: 82°F Conditioned Gas Dewpoint: 20°F

Advantages of Membrane Systems

- Simple passive system
- High on-stream factor (typically > 98%)
- Minimal or no operator attention
- Small footprint, low weight (Platform Applications)
- Ambient temperature operation in many applications
- Large turndown ratio
- Low maintenance
- Lower capital and operating costs

Summary

Wide range of applications in the Oil, Gas and Refining Industries

- **Gas**: Fuel gas conditioning, NG dewpointing, Natural Gas Dehydration.
- **Oil**: Associated gas processing, Vapor recovery from storage tanks and transportation.
- **Refining**: LPG/Fuel gas, Hydrotreater/Hydrocracker Purge, Refinery gas plant, Hydrogen recovery.

