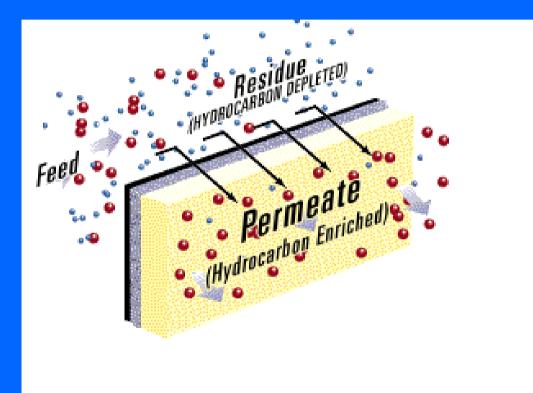
Only Raw Sour Gas Available for Engine Fuel? Proven Membrane Process Cleans Gas for Engines

By

Kaaeid A. Lokhandwala, Ankur Jariwala and Richard Baker Membrane Technology and Research, Inc.


1360 Willow Road, Menlo Park, CA 94025

Website: <u>www.mtrinc.com</u>

Presented at The 56th Laurance Reid Gas Conditioning Conference February 27 – March 1, 2006 Norman, OK

Membrane Separation Mechanism

Permeability = Diffusivity * Solubility (P) (D) (S)

Membrane Selectivity $\frac{P_1}{P_2} = \frac{D_1}{D_2} \cdot \frac{S_1}{S_2}$

Rubbery Membranes Reject Lighter Gases such as N₂, CH₄ and H₂ and Permeate Heavier Hydrocarbon Components

Glassy v/s Rubbery Membranes

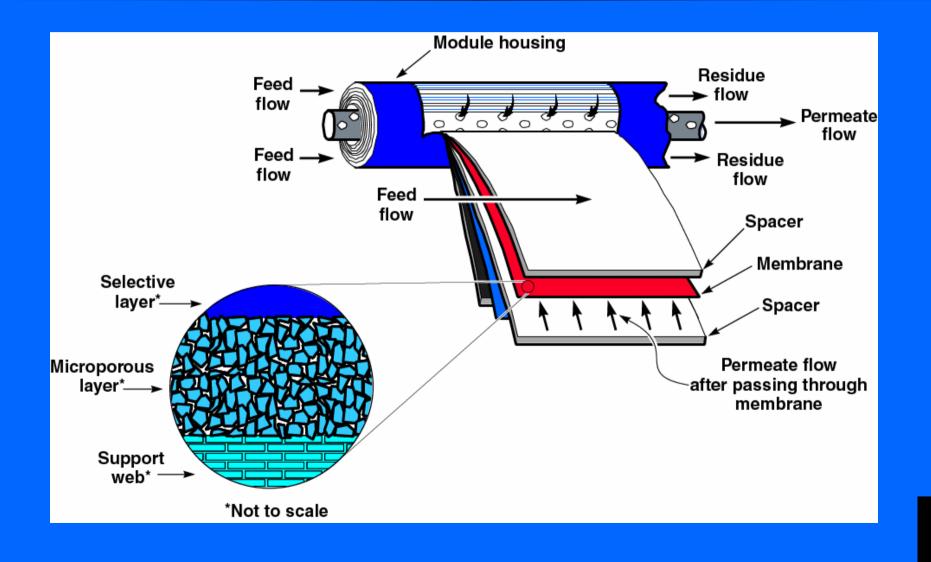
Glassy Membranes

Slow Gas Fast Gas Nitrogen **Ethane** Hydrogen Hexane H₂O CO, **Methane** Propane **Rubbery Membranes Slow Gas** Fast Gas Ethane Nitrogen Methane Hexane H₂O CO, Hydrogen Propane

Membrane System Installations Increasing References and Application Envelopes

Gas/Gas Separation Systems

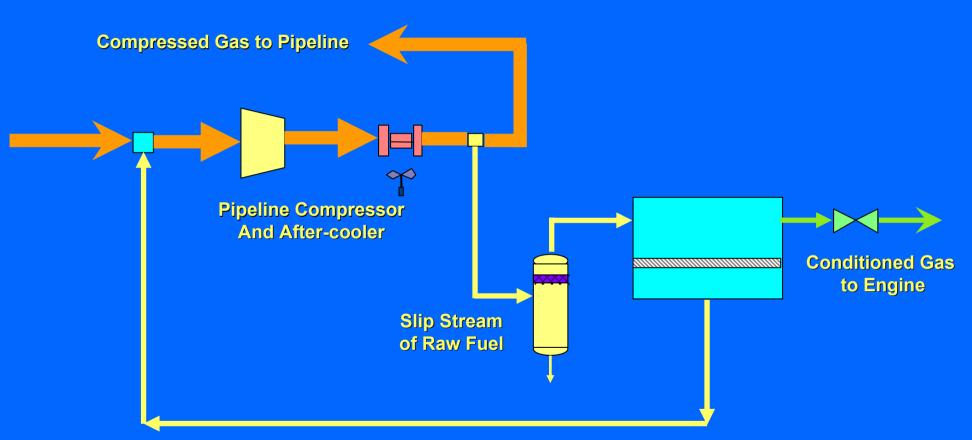
H ₂ /N ₂ , CH ₄	~ 250 Units	Glassy
O ₂ /N ₂	~ 5,000 Units	Membranes
CO ₂ /CH ₄	~ 250 Units	


Vapor/Gas Separation Systems

Hydrocarbon/ N_2 . CH₄ ~ 125 Units

Rubbery Membranes

Membrane Structure and Packaging



Fuel Gas Conditioning Remote Site Considerations

- Increasingly Natural Gas <u>Production is Coming for Remote</u> <u>Locations</u>
- Raw Gas in Gathering Systems <u>Requires Compression</u>
- Fuel Choices are Limited Diesel or Raw Gas
- Diesel represents <u>cost, transportation logistics, storage</u> and other issues
- Poor Quality <u>Raw Gas Results in Deration</u> of Available Power to Compressors and Gensets
- <u>Derated Compressors or Gensets</u> = <u>Loss in Production</u> <u>Volumes and Equipment Shutdowns</u>
- <u>A Simple Process Technology</u> Which Operates <u>Without</u> <u>Attention and Consumables</u> Is Required

<u>Reverse-Selective Membranes Have Been Now Proven to</u> Meet These Requirements

How Does The Process Work ?

Very Rich Gas Return to Compressor Suction

Selected Field Experience Data Membrane FGCU's

- Kakap-H Remote Platform Star Energy, Indonesia
- Sour Gas Processing H2S Reduction in Fuel Gas
 Dominion Exploration, British Columbia, Canada
- 3 Engine Gen-set on Petrojarl I (FPSO) Statoil (PGS) – North Sea
- Gas Conditioning for 500 MW Power Plant Turbines El Paso Gas/UEG, Curitiba, Brazil
- Superior and Waukesha Engines Fuel Gas Conditioning Sid Richardson, New Mexico (2 Units)

Kakap-H Remote Platform Star Energy, Indonesia

Components	Gas Compositions		
	Feed Gas (mol%)	Conditioned Fuel Gas (mol %)	
Propane	4.60	1.48	
i-Butane	1.97	0.52	
<i>n</i> -Butane	1.53	0.30	
Pentanes	1.74	0.28	
Hexane	1.05	0.126	
C ₆₊	0.91	0.078	
Balance Methane and Ethane			
Total C ₃₊ Hydrocarbons	11.76	2.78	
METHANE NUMBER	<u>16</u>	<u>71</u>	

Acknowledgement: Data Provided by Mr. Zikri Syah, Star Energy

Kakap-H Remote Platform Star Energy, Indonesia

Sour Gas Processing - H₂S Reduction in Fuel Gas British Columbia, Canada

Gas Stream Component	Feed Gas (mol %)	Conditioned Gas (mol %)	
Hydrogen Sulfide	0.34	0.004	
Propane	2.72	0.624	
i-Butane	0.37	0.049	
<i>n</i> -Butane	0.67	0.088	
i-Pentane	0.18	0.018	
<i>n</i> -Pentane	0.19	0.019	
Hexane	0.16	0.010	
C ₆₊	0.14	0.008	
Total C ₃₊ Hydrocarbons	4.43	0.82	
H ₂ S Content	<u>3400 ppm</u>	<u>40 ppm</u>	

Acknowledgement: Data Provided by Mr. Brett Kimpton, Dominion Exploration

Sour Gas Processing - H₂S Reduction in Fuel Gas British Columbia, Canada

MTR

3 Engine GenSet on Petrojarl - I (FPSO) Statoil (PGS/Wartsila) – North Sea

Stream Name	Inlet Feed (Mol-%)	Conditioned Fuel Gas (Mol-%)	
Methane	72.94	86.95	
Ethane	9.73	5.68	
Propane	8.51	3.18	
Butanes	5.05	1.10	
Pentanes	1.63	0.30	
Carbon Dioxide	0.40	0.25	
Nitrogen	1.22	2.49	
N-Hexane	0.52	0.06	
Methane Number	<u>32</u>	<u>65</u>	
Pressure (bar)	13.8	10.3	
Volume (MMSCFD)	5.5	1.8	

3 Engine Gen-set on Petrojarl - I (FPSO) Statoil (PGS/Wartsila) – North Sea

Gas Conditioning for 500 MW Power Plant Turbines El Paso Gas/UEG, Curitiba, Brazil

	Gas Compositions		
Component	Feed Gas (mol %)	Conditioned Fuel Gas (mol %)	
Propane	2.000	1.489	
C ₄₊	0.785 0.449		
Pressure (psig)	700-900		
Flow Rate (MMSCFD)	120 MMSCFD		

Gas Conditioning for 500 MW Power Plant Turbines El Paso Gas/UEG, Curitiba, Brazil

Superior and Waukesha Engines Fuel Gas Conditioning Sid Richardson, New Mexico (2 Units)

Stream Name	Inlet Feed (mol-%)	Guaranteed Conditioned Fuel Gas (mol-%)	Actual Inlet Feed (mol-%)	Actual Conditioned Fuel Gas (mol-%)
Methane	73.3	81.99	69.58	81.19
Ethane	10.89	6.93	11.23	6.89
Propane	6.00	2.63	6.53	2.35
Butanes	2.55	0.56	2.53	0.66
Pentanes	1.07	0.2	0.77	0.16
Carbon Dioxide	1.63	0.85	4.67	3.07
Nitrogen	3.71	6.69	4.05	5.41
N-Hexane	0.83	0.126	0.37	0.07
Methane Number	39	67	44.4	68

Superior and Waukesha Engines Fuel Gas Conditioning Sid Richardson, New Mexico (2 Units)

MTR

Where Can These Membrane Skids be Used Right Now?

- Remote Compressor Stations Currently Derated Due to Raw Fuel Elimination of Engine Derate will Immediately Increase Gas Production/Transportation Volumes
- Sour Gas Production Sites without access to clean gas -Elimination of Diesel or Expensive solvent systems. Especially Suitable to Colder Climates
- Derated GenSet Due to Fuel Quality Elimination of Derate will allow additional power generation for production activities
- Offshore Platforms Reduced Power Generation or Compressor Utilization due to poor fuel gas would be eliminated resulting in higher volume gas and oil production

Other Opportunities for Reverse Selective Membranes

- Fuel Gas Conditioning to Increase BTU Value by Reducing N₂ and CO₂
- Direct Wellhead Nitrogen Removal from Natural Gas
- Direct Wellhead CO₂ Removal From Natural Gas

Summary

- Reverse Selective Membranes Have Been Successfully Proven in Well head Natural Gas Conditioning Applications
- More than 100 combined Installations of these membranes Worldwide in Petrochemicals and Oil/Gas Industries.
- Standardized Fuel Gas Conditioning Units Designed for Unattended Operation Reduce Deployment Time and Cost
- Immediate Production Boost and Additional Revenue Generation in Gas Gathering is Possible in Many Locations Currently Operating Under Derated Conditions.

