

1

BioSep[™]: A New Ethanol Recovery Technology for Small Scale Rural Production of Ethanol from Biomass

Yu (Ivy) Huang, Ph.D. Membrane Technology & Research, Inc. 1360 Willow Road, Suite 103 Menlo Park, California

&

Leland M. Vane, Ph.D. Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio

AICHE San Francisco, California November 2006

Ethanol production is growing globally

- Brazil > 50% sugar cane crop —> 40% non-diesel fuel
- USA currently, 15% corn crop —> 2% non-diesel fuel > 1/3 oil displacement by 2025
- EU 6% biofuel by 2010 20 - 30% replacement of oil by 2030
- China Launched a program to use ethanol as a fuel

Table 1. Top Five Fuel Ethanol Producers in 2005	Table 1.	Top Five	Fuel	Ethanol	Producers	in 2005
--	----------	----------	------	---------	-----------	---------

	Production
	(million liters)
Brazil	16,500
United States	16,230
China	2,000
European Union	950
India	300
Source: Christoph Berg	

Source. Chinstoph Dert

Table 2. Top Five Biodiesel Producers in 2005

	Production (million liters)
Germany	1 920
Erance	511
Lipited States	200
United States	290
Italy	227
Austria	83
Source: F. O. Licht	

How much ethanol can we produce?

Current:

Oil consumption: 873 MM gal/day, 58% import
Ethanol production: 12 MM gal/day

Forecast for 2025:

Oil consumption from import: 870 MM gal/day
 The President's goal: replace 75% import from Mideast – 100 MM gal/day

Ethanol from Biomass

Two competing driving forces:

Ethanol concentration/purification by distillation/molecular sieve is only economical at > 40-50 MM gal/year

 \rightarrow driver for central production

Transport of biomass over long distances is costly and energy inefficient

→ driver for distributed production in rural areas
 (with added benefits for rural economies)

Can this problem be solved? The solution is membranes (of course).

MTR BioSep Process

Applications of BioSep Process

Small biomass waste streams generated in the production of

- -- beer, wine, and juice
- -- cane and beet sugar
- -- potatoes, yams, and other root crops
- -- cheese, soft drinks, confectionery and packaged foods

Replace molecular sieve in conventional corn to ethanol plant

Replace distillation in conventional corn to ethanol plant

What is pervaporation?

Pervaporation = <u>**Permeation + Evaporation</u></u></u>**

Not limited by thermodynamic vapor-liquid equilibrium (VLE)

Dehydration of organic solvents

- Primarily dehydration of ethanol and iso-propanol
- First commercial plant in the world was put into operation in Brazil in 1984.
- Commercial application of inorganic membranes
- Needs improvements to be competitive with molecular sieves in large scale applications

 \triangleright Removal and recovery of organic solvents from water

Commercially successful applications are hard to find

Pervaporation using Ethanol-Permeable and Water-Permeable Membranes

Ethanol removal from 5-10 wt% ethanol/water mixture

Water removal from 90 wt% ethanol/water mixture

Fractional condensation (dephlegmation) improves separation

Packed-column dephlegmator

Vapor enters at the bottom

Vapor is partially condensed at the top

Condensate trickles down, creates a counter-current effect

Achieves 4 to 6 theoretical stages of separation

Significant increase in separation performance

Ethanol Permeable Membranes

Solution: zeolite mixed-matrix membrane

Mixed-matrix Membranes

Package membranes into spiral-wound modules

Conclusions

- Pervaporation offers alternative to distillation for ethanol recovery
 - Higher selectivity membranes will yield energy savings
 - Membranes scale down better than distillation
- Pervaporation offers alternative to molecular sieves for water removal
 - Chemical and thermal stable membranes developed
 - Systems commercially available
- Synergies achievable through use of pervaporation for <u>both</u> ethanol recovery and dehydration
 - Combined with dephlegmation condensation

- U.S. Department of Energy
- U.S. Department of Agriculture
- Jennifer Ly, Tiem Aldajani, Karl Amo of MTR
- Vasudevan Namboodiri, Travis Bowen of EPA

Questions?

Liquid Separation Group