Membrane Systems for Nitrogen Rejection

By

Kaaeid A. Lokhandwala, Andre Da Costa, Marc Jacobs and Richard Baker

Membrane Technology and Research, Inc.

1360 Willow Road, Menlo Park, CA 94025

Website: www.mtrinc.com

Membrane Separation Mechanism

Permeability = Diffusivity * Solubility (P) (D) (S) Membrane Selectivity $\frac{P_1}{P_2} = \frac{D_1}{D_2} \cdot \frac{S_1}{S_2}$

MTR's Rubbery Membranes Reject Nitrogen and permeate hydrocarbon components

Glassy v/s Rubbery Membranes

Glassy Membranes

Rubbery Membranes

Fast Gas

Slow Gas

	Hexane	Ethane		Methane)	Nitrogen
H ₂ O		Propane	CO ₂	1	Hydroge	an 🕇

Membrane System Installations

Gas/Gas Separation Systems

H ₂ /N ₂ , CH ₄	~ 200 Units	Glassy
O_2/N_2	~ 5,000 Units	Membranes
CO ₂ /CH ₄	~ 200 Units	

Vapor/Gas Separation Systems

VOC/Air Hydrocarbon/N₂. $CH_4 \sim 100$ Units Rubbery Membranes

-

MTR's Composite Membrane

MTR Spiral Wound Cartridge

Field Test Unit Process Diagram

Nitrogen Rejection Test System

Flow Capacity Max: 0.2 MMSCFD Operated: 0.1-0.2 MMSCFD

Pressure rating Max: 1250 psig Operated: 400-600 psig

Temperature Max: 135°F Operated: 15-50°F

Field Test – Inlet Gas Composition

Component	Composition (mole%)
Methane	75.0
Ethane	2.8
Propane	1.0
Butane	0.4
Pentane and heavier	0.1
Water	1.7
Nitrogen	19.0

Comparison of Lab and Field Data

Long Term Separation Efficiency

Nitrogen Rejection – Application Envelope

- Inlet Nitrogen Content between 4 and 20 vol-%
- Inlet flow rate between 0.1 20 MMSCFD
- Discharge N₂ specification between 4 and 8 vol-%
- Upgrading to Pipeline acceptability
- Upgrading fuel gas to meet BTU-Value for Burning
- Hydrocarbon Removal for Nitrogen Re-injection

Case 1 : Inlet N_2 Content = 8 mol%

Two step process produces pipeline quality gas and fuel gas for process use.

Product gas compressor may be required to boost pressure to pipeline pressure.

Case 2 : Inlet N_2 Content = 15 mol%

Economic Analysis

Parameter	Configuration 1	Configuration 2					
Process Characteristics							
N ₂ in feed (%)	8	15					
Feed flow rate (MMSCFD)	10	10					
N ₂ in product gas	4	4					
Methane recovery (%)	86	86					
Methane in fuel gas (%)	87	75					
Methane in waste gas (%)	50	35					
Product gas flow rate (MMSCFD)	8.2	7.6					
Power Requirements							
Power required (Hp)	750	2,000					
Capital and Operating Costs							
Equipment cost (\$000)	1,800	3,500					
Processing cost (\$/1000 scf)	0.27	0.56					

- Processing Costs about 0.25 to 0.5 \$/MCF are very favorable
- Membrane system are flexible and can be used for various sites and inlet gas compositions
- Ideal for remote continuous operation without operator attention
- Well suited for low flow rate applications

Similar Applications – Fuel Gas Conditioning for Gas Engines and Turbines

Designed for Offshore Installation

Main System Components

Membrane Modules/Housings Filter Separator/Coalescer Inlet and Discharge Valves

System Dimensions: 6 ft (W) x 8 ft (L) x 8 ft (H)

Location: Nigeria

Flow Capacity: 2.5 MMSCFD Pressure rating 550 psig Operating pressure: 220 psig

Feed hydrocarbon dewpoint: 82°F Conditioned Gas Dewpoint: 20°F

Advantages of Membrane Systems

- Simple passive system
- High on-stream factor (typically > 98%)
- Minimal or no operator attention
- Small footprint, low weight
- Large turndown ratio
- Low maintenance
- Lower capital and operating costs

Summary

Other applications in the Oil & Gas Industries for MTR's Reverse-Selective membranes

- Gas: Fuel gas conditioning, NG dewpointing, NGL Recovery, Natural Gas Dehydration.
- Oil: Associated gas processing, Vapor recovery from storage tanks and ship vents.

